Abstract

A nanostructured molybdenum trioxide (MoO₃) layer was successfully fabricated utilizing various deposition rates, employed as an anodic buffer layer to separate the active layer from a silver anode and modifying the anodic surface to facilitate hole transportation for top-incident organic photovoltaic (TIOPV) devices. The deposition rate and thickness of the MoO₃ layer were crucial parameters for determining the surface morphology and work function, and the internal optical field distribution, respectively. These factors affected the performance of the devices in terms of their open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The baseline TIOPV device without a buffer layer had a power conversion efficiency (PCE) of only 0.47%. By contrast, with a smooth 20-nm MoO₃ buffer layer fabricated using a deposition rate of 1 Å/s (which prevented problems caused by the Ag anode), another fabricated TIOPV device had substantially higher VOC, JSC and FF values, which improved the PCE by a factor of 6.2 to 2.92%. When an additional 5-nm nanostructured MoO₃ layer was deposited at a deposition rate of 0.5 Å/s, the most efficient TIOPV device had an even greater PCE, a factor of 7.5 times higher at 3.53%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.