Abstract

The electrochemical performance of the pseudocapacitive materials is seriously limited by poor electron and ions transport. Herein, an advanced integrated electrode has been designed by growing the pseudocapacitive materials, including Co(x)Ni(1-x)(OH)2, Co(x)Ni(1-x)O, and (Co(x)Ni(1-x))9S8, on a three-dimensional hollow carbon nanorod arrays (HCNA) scaffold. The HCNA scaffold not only can provide large surface area for increasing the mass loading of the pseudocapacitive materials, but also is with good electrical conductivity and hollow structure for facilitating fast electron and electrolyte ions transport, and thus improve the electrochemical performance. Particularly, in comparison with Co(x)Ni(1-x)(OH)2 and Co(x)Ni(1-x)O nanosheets, (Co(x)Ni(1-x))9S8 nanosheets on the HCNA scaffold exhibit better electrochemical performance. The discharge areal capacitance of the (CoxNi1-x)9S8/HCNA electrode can be achieved to 1.32 F cm(-2) at 1 mA cm(-2), ∼1.5 times as that of the Co(x)Ni(1-x)(OH)2/HCNA electrode. The rate capability performance is also improved. 71.8% of the capacitance is retained with increasing the discharge current density from 1 to 10 mA cm(-2), in contrast to ∼59.9% for the Co(x)Ni(1-x)(OH)2/HCNA electrode. Remarkably, the cycling stability is significantly enhanced. ∼111.2% of the initial capacitance is gained instead of decaying after the 3000 cycles at 8 mA cm(-2), while there is ∼11.5% loss for the Co(x)Ni(1-x)(OH)2/HCNA electrode tested under the same condition. Such good electrochemical performance can be ascribed by that (Co(x)Ni(1-x))9S8 exhibits the similar energy storage mechanism as Co(x)Ni(1-x)(OH)2 and Co(x)Ni(1-x)O, and more importantly, is with better electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.