Abstract
Abstarct The electrosensing of chlorzoxazone (CHZ) was studied for the first time at nanostructured Au/graphene modified glassy carbon electrode (AuNPs/Gr/GCE) employing different voltammetric techniques viz. cyclic, linear sweep and differential pulse voltammetries. The results indicated that the voltammetric response of CHZ was improved distinctly at the AuNPs/Gr/GCE electrode than that at bare GCE. In order to carry out the CHZ determination, the dependency of the response current on supporting electrolyte pH, sweep rate and CHZ concentration were inspected to optimize the investigational conditions. The surface characterizations of the Au/graphene modified and unmodified glassy carbon electrodes were carried out. The anodic peak showed a process of diffusion-control. The number of electrons transferred was calculated to be two. The determination of [CHZ] using the modified electrode was studied over the range of 1.0 × 10−7 M to 10.0 × 10−7 M which showed the LOD value to be 1.164 × 10−8 M. The study of excipients showed that the method owns selectivity. A differential pulse voltammetry which is fast and simple, showed a good accuracy and precision, for the purpose of determining the [CHZ] in biomedical applications like pharmaceutical formulation and also in pathological sample testing. In addition, this type of work can find its usage towards scientific purposes that involves electrical measurements, particularly in industrial quality management, environmental pollution management, as it involves simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.