Abstract

Protein glycosylation plays a vital role in many physiological activities in organisms. Due to the low abundance of glycopeptides and the interference of numerous non-glycopeptides in biological samples, selective enrichment of glycopeptides is of great significance for their successful identification. Metal organic frameworks (MOFs) materials are appropriate for glycopeptides enrichment by virtue of their large specific surface area and outstanding hydrophilic properties. However, the instability of hydrophilic MOFs in acidic solutions have severely limited their applications. In this work, a rational facile strategy was established to synthesize a stable hydrophilic hierarchical porous MOF (denoted as HP-MOF-Arg@mSiO2). This new material improved the selectivity and sensitivity of enrichment for glycopeptides via modification of arginine groups. More importantly, the mesoporous silica layer was introduced to enhance the stability of MOFs in aqueous solution and achieve the size exclusion effect of large-size proteins in complex samples. Overall, owing to the unique hierarchical porous and the hydrophilic modification, the synthesized HP-MOF-Arg@mSiO2 materials showed excellent hydrophilicity and hydrolytic stability, resulting in outstanding specific separation capacity in glycopeptides enrichment. A total of 521 and 342 glycopeptides were respectively captured from 2μL human serum digests and mouse testis tissue digests, revealing the potential of the materials in the study of glycoproteomics in complex biological samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.