Abstract

Selective enrichment and isolation of glycopeptides from complex biological samples was indispensable for mass spectrometry (MS)-based glycoproteomics, however, it remained a great challenge due to the low abundance of glycoproteins and the ion suppression of non-glycopeptides. In this work, 4-mercaptophenylboronic acid functionalized graphene oxide composites were synthesized via loading gold nanoparticles on polyethylenimine modified graphene oxide surface, followed by 4-mercaptophenylboronic acid immobilization by the formation of Au–S bonding (denoted as GO/PEI/Au/4-MPB composites). The composites showed highly specific and efficient capture of glycopeptides due to their excellent hydrophilicity and abundant boronic acid groups. The composites could selectively capture the glycopeptides from the mixture of glycopeptides and nonglycopeptides, even when the amounts of non-glycopeptides were 100 times more than glycopeptides. Compared with commercial meta-amino phenylboronic acid agarose, the composites showed better selectivity when the sample was decreased to 10 ng. These results clearly verified that the GO/PEI/Au/4-MPB composites might be a promising material for glycoproteomics analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call