Abstract

The precipitation of solid-state sphere-like nanostructures from an organosilicon precursor at atmospheric pressure is investigated with the prospect of improving powder flowability by the attachment of nanoscopic spacers to the powder particles' surfaces. Tetramethylsilane (TMS) is admixed to the afterglow of a low power (<0.5 W) barrier discharge (BD). The BD occurs in a single miniature flow channel, where Ar or He enriched with O2 is excited favouring homogeneous gas phase reactions of atomic oxygen and TMS in the afterglow. The chemical and morphological influence of Ar or He on the formation of nanostructures is explored at two positions in the afterglow by Fourier transform infrared spectroscopy and scanning electron microscopy. For the Ar-based BD, larger spherical nanostructures (100–1000 nm) of higher oxide content are obtained, while for He polymeric deposits with characteristic sizes below 100 nm are found. In addition, the processing capability of a BD device, consisting of a set of 64 miniature flow channels, is probed by means of the wettability improvement of polymer powder particles, conveyed through the BD afterglow zone of a multi-channel device. The treatment is shown to decrease the benzyl alcohol contact angle significantly with increasing oxygen feed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.