Abstract

We performed a systematic study of the nanostructure and magnetic properties of FePt on templates of either (200)-oriented polycrystalline TiN underlayers with in-plane grain sizes from 5.8 to 10 nm (poly-TiN) or highly (200)-textured TiN underlayers epitaxially grown on single-crystalline MgO (100) substrates (epi-TiN). For small nominal FePt thicknesses (0.7–8.0 nm), FePt forms particulate films with the magnetic easy axis perpendicular to the film plane on every template TiN underlayer. In addition, the coercivity of nominally 1.4-nm-thick FePt at 300 K in the out-of-plane direction increases from 5.3 kOe for 5.8-nm-sized poly-TiN to 12.9 kOe for 10-nm-sized poly-TiN and reaches 16.3 kOe for epi-TiN, which shows that the coercivity strongly depends on the degree of the c-axis orientation. For larger FePt nominal thicknesses (16–64 nm), FePt particles percolate and form continuous films, and the direction of the easy magnetic easy axis becomes random. The coercivity of nominally 64-nm-thick FePt at 300 K in the out-of-plane direction is still as large as 8.8 kOe for 10-nm-sized poly-TiN, but it drastically decreases to 0.5 kOe for epi-TiN. The absence of in-plane texture in the FePt layer on the poly-TiN suppresses the decrease in coercivity, which prevents domain-wall displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.