Abstract

In this work sodium montmorillonite (Na-MMT) was functionalized with N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane and the corresponding silylated clay was used to modify epoxy matrix cured with triethylenetetramine. The grafting/intercalation of the aminosilane inside the clay galleries were followed by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis and 29Si cross-polarization magic-angle-spinning nuclear magnetic-resonance (CP/MAS NMR) spectroscopy. Epoxy-based nanocomposites were prepared with different amounts of silylated clay or commercial organoclay, Cloisite 30B, whose intercalating agent consists of a methyl, tallow, bis-2-hydroxyethyl quaternary ammonium salt. The degree of intercalation/exfoliation was estimated by X-ray diffraction experiments and confirmed by small angle X-ray scattering. Nanocomposites prepared with silylated clay displayed no peak in both XRD and SAXS curves whereas those prepared with Cloisite 30B exhibited a clear interference peak corresponding to an interlayer spacing d 001 of 4.1 nm. The former also presented a better dispersion, with a high proportion of tactoids smaller than 2 nm, as estimated by SAXS. From the results of dynamic mechanical analysis it was observed that most of the nanocomposites display higher storage modulus mainly at temperatures above the glass transition temperature. The glass transition temperature is similar or higher than the neat epoxy network for nanocomposites containing 1 wt.% of silylated clay or higher.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.