Abstract

Porous metal–organic frameworks (MOFs), also known as porous coordination polymers, represent a new class of porous materials, and one of their striking features lies in their tunable, designable, and functionalizable nanospace. This nanospace within MOFs provides virtually plenty of room for imagination, allowing designed incorporation of different size, shape, and functionalities for targeted gas storage and separation applications. Furthermore, the features of high porosities, tunable framework structures and pore sizes, and immobilized functional sites enable MOF materials to fully make use of their nanopore space for gas storage, to optimize their sieving effects, and to differentiate their interactions with gas molecules for gas separation. In this review article, we highlight some recent significant advances in developing microporous MOFs for some of the most important gas storage and separation applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call