Abstract

Coconut‐like monocrystalline SnS/C nanospheres are developed as anode materials for lithium‐ion batteries by a micro‐evaporation‐plating strategy in confined nanospaces, achieving reversible capacities as high as 936 mAh g−1 at 0.1 A g−1 after 50 cycles and 830 mAh g−1 at 0.5 A g−1 for another 250 cycles. The remarkably improved electrochemical performances can be mainly attributed to their unique structural features, which can perfectly combine the advantages of the face‐to‐face contact of core/shell nanostructure and enough internal void space of yolk/shell nanostructure, and therefore well‐addressing the pivotal issues related to SnS low conductivity, sluggish reaction kinetics, and serious structure pulverization during the lithiation/delithiation process. The evolutionary process of the nanospheres is clearly elucidated based on experimental results and a multiscale kinetic simulation combining the microscopic reaction‐diffusion equation and the mesoscopic theory of crystal growth. Furthermore, a LiMn2O4//SnS/C full cell is assembled, likewise exhibiting excellent electrochemical performance. © 2018 American Institute of Chemical Engineers AIChE J, 64: 1965–1974, 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.