Abstract

In this chapter we present the method of spatially modulated illumination (SMI) microscopy, a (far-field) fluorescence microscopy technique featuring structured illumination obtained via a standing wave field laser excitation pattern. While this method does not provide higher optical resolution, it has been proven a highly valuable tool to access structural parameters of fluorescently labeled macromolecular structures in cells. SMI microscopy has been used to measure relative positions with a reproducibility of <2 nm between fluorescing objects. Among others, we have measured size distributions of protein clusters with an accuracy much better than the resolution achievable e.g. in confocal microscopy. The advantages of the SMI microscope over other (ultra-)high resolution light microscopes are its easy sample preparation and microscope handling as well as the comparably fast acquisition times and large fields of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.