Abstract

We have investigated the rate sensitivity of flow stress and the extent of strengthening in polycrystalline copper containing different volume fractions of nano-sized twins, but having the same average grain size. The specimens were produced by pulsed electrodeposition, wherein the concentration of twins was varied systematically by varying the processing parameters. Depth-sensing instrumented indentation experiments performed at loading rates spanning three orders of magnitude on specimens with the higher density of twins (twin lamellae width ∼20 nm) revealed an up to sevenfold increase in rate-sensitivity of hardness compared to an essentially twin-free pure Cu of the same grain size. A reduction in twin density for the same grain size (with twin lamellae width ∼90 nm) also resulted in a noticeable reduction in rate-sensitivity and hardness. The presence of a high density of nano-scale twins is also seen to impart significant hardness, which is comparable to that achieved in nano-grained Cu. Post-indentation analyses of indented Cu with nano-scale twins in the transmission electron microscope reveal deformation-induced displacement of coherent twin boundaries (CTBs), formation of steps and jogs along CTBs, and blockage of dislocations at CTBs. These processes appear to significantly influence the evolution of thermal activation volume for plastic flow which is some three orders of magnitude smaller than that known for microcrystalline Cu. Transmission electron microscopy also reveals CTBs with a high density of dislocation debris and points to the possibility that displaced CTBs may serve as barriers to dislocation motion and that they may also provide sources for dislocation nucleation, especially near stress concentrations, very much like grain boundaries. Possible consequences of these trends for deformation are explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call