Abstract
The sol–gel autocombustion method has been used to synthesize the Ce–Zn substituted with composition Sr2−xCexNi2Fe28−yZnyO46 (x=0.02, 0.04, 0.06, 0.08, 0.010 and y=0.1, 0.2, 0.3, 0.4, 0.5) X-type hexagonal ferrites. The XRD analysis confirms the single phase of the material. The variation in lattice parameters can be observed with addition of Ce–Zn dopant. The ferrites substituted with Ce–Zn contents have low value of grain size than the unsubstituted ferrites. The crystallite size measured from TEM and HRTEM analysis was found in the range of 40–45nm which is in good agreement with the theoretically measured by Scherer formula. The room temperature electrical resistivity lies in the range of ~109Ω-cm, so the investigated sample can be considered good material for reducing the eddy current losses. The enhancement in magnetic properties (saturation magnetization, retentivity and coercivity) has been observed with the substitution of Ce–Zn contents in pure ferrites. The increment in resistivity and magnetic properties with the substitution of Ce–Zn dopant makes it important candidate to be used in the formation of multilayer chip inductors (MLCIs). The maximum reflection loss of −23.4dB at 12.858GHz is obtained by Ce–Zn doped ferrites and attenuation constant agrees well with the reflection loss. The microwave absorption properties of this substituted material reflect its applications in super high frequency (SHF) devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.