Abstract

This investigation of the catalytic properties of noble metal nanoparticles stabilized in hypercrosslinked polystyrene (HPS) matrix shows the prospect for their application in regioselective oxidation region- and enantioselective hydrogenation, which represent key stages for the synthesis of the intermediates and final products of pharmaceutical industry. Commercial use of nanosized catalysts allows shortening the synthetic stages, increasing product yields, and improving the environmental safety of the existing industrial processes. In this review, the synthesis, structure and catalytic properties of mono- (Pt, Ru, Pd), bi- (Pt-Pd, Pt-Ru, Pd-Ru), and trimetallic (Pt-Pd-Ru) nanoparticles stabilized in the pores of a polymeric HPS matrix are discussed. Physicochemical investigations have shown that the formation of metal-containing nanoparticles depends on the properties of the porous polymeric structure, the nature of the initial metal precursor, and the synthesis conditions. The use of nanosized catalysts is revealed to be effective in the most important field of fine organic synthesis: preparation of materials for medicine, vitamins, and food additives (e.g., in the food and pharmaceutical industry).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.