Abstract

The entropy-driven strategy has been proposed as a milestone work in the development of nucleic acid amplification technology. With the characteristics of an enzyme-free, isothermal, and relatively simple design, it has been widely used in the field of biological analysis. However, it is still a challenge to apply entropy-driven amplification for intracellular target analysis. In this study, a dual-entropy-driven amplification system constructed on the surface of gold nanoparticles (AuNPs) is developed to achieve fluorescence determination and intracellular imaging of microRNA-21 (miRNA-21). The dual-entropy-driven amplification strategy internalizes the fuel chain to avoid the complexity of the extra addition in the traditional entropy-driven amplification strategy. The unique self-locked fuel chain system is established by attaching the three-stranded structure on two groups of AuNPs, where the Cy5 fluorescent label was first quenched by AuNPs. After the target miRNA-21 is identified, the fuel chain will be automatically unlocked, and the cycle reaction will be driven, leading to fluorescence recovery. The self-powered and waste-recycled fuel chain greatly improves the automation and intelligence of the reaction process. Under the optimal conditions, the linear response range of the nanosensor ranges from 5 pM to 25 nM. This nanoreaction system can be used to realize intracellular imaging of miRNA-21, and its good specificity enables it to distinguish tumor cells from healthy cells. The development of the dual-entropy-driven strategy provides an integrated and powerful way for intracellular miRNA analysis and shows great potential in the biomedical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.