Abstract

nZVI is considered to be a promising material for environmental remediation. However, the drawbacks of easy agglomeration and low activity severely limit its application. In this work, nZVI/ZIF-8 was obtained by in-situ reduction of nZVI in the presence of performed ZIF-8. The reactivity of the as-obtained nZVI/ZIF-8 nanocomposites was investigated by removing hexavalent chromium (Cr(VI)) from wastewater. The as-obtained nZVI/ZIF-8 nanocomposites showed a superior activity for Cr(VI) removal, with an optimum activity (91.27%) achieved over 0.25 nZVI/ZIF-8 (i e., the mass ratio of ZIF-8 to nZVI was 0.25), higher than that of nZVI (64.55%), and this could be owned to the excellent dispersion of nZVI in nZVI/ZIF-8 and the high specific surface area as compared with the bare nZVI. The results of XPS characterization, quenching experiment analysis and kinetics fitting indicated that the Cr(VI) elimination was a surface-dominated chemical reduction process. Besides, more than 99.00% Cd(II), Cu(II), Cr(VI) and Pb(II) was removed from wastewater over nZVI/ZIF-8 nanocomposites, and negligible zinc ion was detected in the aqueous solutions. The results of our finding demonstrate that the introduction of MOFs is an effective strategy in developing a highly efficient nZVI-based nanocomposites system, and also highlight the promising role of using nZVI/MOFs in heavy metal treatment for practical wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call