Abstract
Extracellular polymeric substances (EPS) are tightly related to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), but often neglected in soil. In this study, nanoscale zero-valent iron (nZVI) was utilized for attenuation of ARGs in contaminated soil, with an emphasis on its effects on EPS secretion and HGT. Results showed during soil microbe cultivation exposed to tetracycline, more EPS was secreted and significant increase of tet was observed due to facilitated HGT. Notably, copies of EPS-tet accounted for 71.39 % of the total tet, implying vital effects of EPS on ARGs proliferation. When co-exposed to nZVI, EPS secretion was decreased by 38.36–71.46 %, for that nZVI could alleviate the microbial oxidative stress exerted by tetracycline resulting in downregulation of genes expression related to the c-di-GMP signaling system. Meanwhile, the abundance of EPS-tet was obviously reduced from 7.04 to 5.12–6.47 log unit, directly causing decrease of total tet from 7.19 to 5.68–6.69 log unit. For the reduced tet, it was mainly due to decreased EPS secretion induced by nZVI resulting in inhibition of HGT especially transformation of the EPS-tet. This work gives an inspiration for attenuation of ARGs dissemination in soil through an EPS regulation strategy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have