Abstract
Low amplitude motions at the micro and the nano-scale at the femoral stem–cement interface under physiological loads can result in fretting and nano-wear on the stem surface. These are important wear processes in cemented total hip replacements as the release of metal debris and ions can trigger adverse local tissue reactions within the body, bone resorption and subsequent aseptic loosening of the femoral component resulting in the implant failure. However, the influence of the microstructure and manufacturing processes on the nano-wear behaviour of different cobalt chromium molybdenum (CoCrMo) alloys has not been studied extensively. Four CoCrMo alloys were tested under reciprocating wear conditions at the nano-scale level. Tangential friction forces, coefficient of friction and plastic deformation values were recorded. A new white-light-interferometer system was validated against atomic force microscopy and Nano Vantage Test System measurements to analyse the permanent plastic deformation caused in each of the samples. Significant differences were found in the total plastic deformation achieved by the as cast alloy compared to the forged, as cast single thermal treated and as cast double thermal treated samples. In addition thermal treated samples presented a tendency to produce a higher quantity of wear debris around the nano-wear scars. These findings indicate a possible relation between the wear resistance at the nano-scale and the manufacturing and thermal processes applied on the CoCrMo biomedical alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.