Abstract

Vacuum tubes were central to the early development of electronics, but were replaced, decades ago, by semiconductor transistors. Vacuum channel devices, however, offer inherently faster operation and better noise immunity due to the nature of their channel. They are also stable in harsh environments such as radiation and high temperature. However, to be a plausible alternative to solid-state electronics, nanoscale vacuum channel devices need to be fabricated on the wafer scale using established integrated circuit manufacturing techniques. Here, we show that nanoscale vacuum channel transistors can be fabricated on 150 mm silicon carbide wafers. Our devices have a vertical surround-gate configuration and we show that their drive current scales linearly with the number of emitters on the source pad. The silicon carbide vacuum devices are also compared to identically sized silicon vacuum channel transistors, which reveals that the silicon carbide devices offer superior long-term stability. Nanoscale vacuum channel transistors, which have a vertical surround-gate configuration, can be fabricated on 150 mm silicon carbide wafers using conventional integrated circuit processing technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.