Abstract

Resistive switching (RS) memory has stayed at the forefront of next-generation nonvolatile memory technologies. Recently, a novel class of transition metal oxides (TMOs), which exhibit reversible topotactic phase transformation between insulating brownmillerite (BM) phase and conducting perovskite (PV) phase, has emerged as promising candidate materials for RS memories. Nevertheless, the microscopic mechanism of RS in these TMOs is still unclear. Furthermore, RS devices with simultaneously high density and superior memory performance are yet to be reported. Here, using SrFeOx as a model system, it is directly observed that PV SrFeO3 nanofilaments are formed and extend almost through the BM SrFeO2.5 matrix in the ON state and are ruptured in the OFF state, unambiguously revealing a filamentary RS mechanism. The nanofilaments are ≈10 nm in diameter, enabling to downscale Au/SrFeOx /SrRuO3 RS devices to the 100 nm range for the first time. These nanodevices exhibit good performance including ON/OFF ratio as high as ≈104 , retention time over 105 s, and endurance up to 107 cycles. This study significantly advances the understanding of the RS mechanism in TMOs exhibiting topotactic phase transformation, and it also demonstrates the potential of these materials for use in high-density RS memories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.