Abstract

Nanoscale phase mixtures in transition-metal oxides (TMOs) often render these materials susceptible to external stimuli (electric field, mechanical stress, etc.), which can lead to rich functional properties and device applications. Here, direct observation and multifield manipulation of a nanoscale mixture of brownmillerite SrFeO2.5 (BM-SFO) and perovskite SrFeO3 (PV-SFO) phases in SrFeOx (SFO) epitaxial thin films are reported. The mixed-phase SFO film in its pristine state exhibits a nanoscaffold structure consisting of PV-SFO nanodomains embedded in the BM-SFO matrix. This nanoscaffold structure produces gridlike patterns in the current and electrochemical strain maps, owing to the strikingly different electrical and electrochemical properties of BM-SFO and PV-SFO. Moreover, electric field control of reversible topotactic phase transformation between BM-SFO and PV-SFO is demonstrated by electric-field-induced reversible changes in surface height, conductance, and electrochemical strain response. In addition, it is also shown that the BM-SFO → PV-SFO phase transformation can be enabled by applying mechanical stress. This study therefore not only identifies a strong nanometric structure-property correlation in the mixed-phase SFO but also offers a new paradigm for the multifield control of topotactic phase transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.