Abstract

We propose a nanoscale switch, giving a nonlinear function with two conductive states separated by a sharp transition region, on the basis of an array of molecular dipoles. We show theoretically that the local interactions between dipoles result in cooperative phenomena that can significantly improve the switching characteristics. We demonstrate the general validity of the concept in the cases of (i) an electrical switch robust to the finite size and variability effects inherent to the nanoscale and (ii) a sensing layer based on the voltage and ligand concentration dependence of the dipole array conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.