Abstract

Mercury ion (Hg2+), as one of the most poisonous heavy metal ions, could seriously damage mental and neurological functions thus causing severe diseases. A fluorescent ratiometric sensor based on semiconducting polymer dots (Pdots) and rhodamine spirolactam derivate was developed for the detection of Hg2+. The Pdots were prepared by Poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)] (PDDB) with emitting strong green fluorescence. The organic fluorescence dye N-(rhodamine-B) lactam-hydrazine (RhBH), as Hg2+-recognizing monomer, was conjugated to the surface of Pdots. Hg2+ could specifically trigger ring-opening process of RhBH and thus induce strong Förster resonance energy transfer (FRET) effect, resulting in the green fluorescence decrease of Pdots (energy donor) and red emission derived from the ring-opened RhBH (energy acceptor) increasing. PDDB@RhBH showed a sensitive and reversible response toward Hg2+ and had a great performance on resisting interferences from various biological analytes. Additionally, both fluorescent imaging in living cells and zebrafish, and systemic toxicity analysis in rats demonstrated that PDDB@RhBH was a great potential fluorescent sensor for quantitative Hg2+ imaging in living systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.