Abstract

Light-harvesting nanoprobes were developed by self-assembly of nanoscale metal-organic frameworks (NMOFs) and stimuli-responsive polymers for fluorometric sensing of pH values and temperature. Two kinds of fluorescent NMOFs (acting as the energy donor) and stimuli-responsive polymers conjugated to fluorophores (acting as energy acceptors) were prepared and characterized. The NMOFs include zirconium(IV) and π-conjugated dicarboxylate ligands. The fluorophores inclued cyaine dyes and aBodipy dye. The energy donor and energy acceptor form a Förster resonance energy transfer (FRET) nanosystem. In the light-harvesting system, the chain lengths of the stimuli-responsive polymers vary when the local pH value or temperature change. Ratiometric sensing of pH and temperature was accomplished by monitoring fluorescence. pH values were can be sensed between 3.0 and 8.0 under 420nm excitation and by ratioing the emission peaks at 645 and 530nm. Temperature can be sensed in the range from 25 to 50°C under 550nm excitation and by ratioing the emission peaks at 810 and 695nm. The nanoprobes display excellent water dispersibility and cell membrane permeability. They were applied to image pH values and temperature in HeLa cells. Graphical abstract Schematic presentation of an effective strategy to fabricate light-harvesting nanoprobes by self-assembly of MOFs and stimuli-responsive polymers for ratiometric pH and temperature sensing. The distance as the polymer length between energy donor and acceptor is crucial for energy transfer efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.