Abstract
We present a study of the process of reduction of thin graphene oxide (GO) films consisting of flakes with lateral size of up to 100 μm through soft ultraviolet irradiation in the argon atmosphere. It was found out that the reduction process leads to a significant decrease in the overall content of the basal-plane functional groups, namely, epoxides and hydroxyls, but with simultaneous increase in the total number of the edge-located carboxyl groups. Obtained transmission electron microscopy images showed that this effect is related to formation of nanoscale holes in the course of reduction. Based on the data obtained, we have proposed a mechanism of the observed GO structural modification in terms of photoinduced chemical reactions between the carbon network and functional groups. These reactions result in progressive growth of the initially existing and newly formed vacancies with formation of the nanoholes with size of up to 100 nm. Thus, reduced graphene oxide films with the restored conjugated networ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.