Abstract

The rising incidence of infections caused by multidrug-resistant bacteria highlights the urgent need for innovative bacterial eradication strategies. Metal ions, such as Zn2+ and Co2+, have bactericidal effects by disrupting bacterial cell membranes and interfering with essential cellular processes. This has led to increased attention toward metal-organic frameworks (MOFs) as potential nonantibiotic bactericidal agents. However, the uniform and enhanced localized release of bactericidal metal ions remains a challenge. Herein, we introduce a nanoscale multipatterned Zn,Co-ZIF@FeOOH, featuring a multipod-like morphology with spiky corners, and dual-bactericidal metal ions. Compared to pure Zn,Co-ZIF, the multipod-like morphology of Zn,Co-ZIF@FeOOH exhibits enhanced adhesion toward bacterial surfaces via topological and multiple interactions of electrostatic interaction, significantly increasing the local release of Zn2+ and Co2+. Additionally, the spiky corners of the spindle-shaped FeOOH nanorods physically penetrate bacterial membranes, causing damage and further enhancing adhesion to bacteria. Nine Gram-negative and one Gram-positive bacteria were selected for in vitro test. Notably, the nanoscale multipatterned Zn,Co-ZIF@FeOOH exhibited high bactericidal efficacy against various multidrug-resistant bacteria, including extended-spectrum β-lactamase-producing (ESBL+) bacteria and carbapenem-resistant bacteria, performing well in both acidic and neutral environments. The wound healing activity of Zn,Co-ZIF@FeOOH was further demonstrated using female Balb/c mouse models infected with bacteria, where the materials show robust antibacterial efficacy and commendable biocompatibility. This study showcases the assembly of metal oxide/MOF composites for nanoscale multipatterning, aims at synergistic bacterial eradication and offers insights into developing nanomaterial-based strategies against multidrug-resistant bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.