Abstract
Industrial approaches to improve lithographic resolution usually rely upon short-wavelength laser or charged particles of even shorter wavelengths. However, nanoscale lithography with visible light is more effective for practical applications because of its low cost, easy operation, and so on. In the current work, a technical scheme for the optical nonlinear saturable absorption effect to induce nanobump pattern structures is proposed. The theoretical simulation indicates that the spot size can be squeezed and reduced to about 1/12 the original spot size using Si thin films as a nonlinear saturable absorption material, and GaN semiconductor diode as the laser source. The high-density digital versatile disk tester was used as the direct laser writing apparatus to verify the technical scheme. Nanostructures with a size of ∼80 nm were obtained. This size is ∼1/10 the spot size at optical diffraction limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.