Abstract

In this work, the origin of the dielectric breakdown of 4H-SiC power MOSFETs was studied at the nanoscale, analyzing devices that failed after extremely long (three months) of high temperature reverse bias (HTRB) stress. A one-to-one correspondence between the location of the breakdown event and a threading dislocation propagating through the epitaxial layer was found. Scanning probe microscopy (SPM) revealed the conductive nature of the threading dislocation and a local modification of the minority carriers concentration. Basing on these results, the role of the threading dislocation on the failure of 4H-SiC MOSFETs could be clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.