Abstract

We have measured the local lattice temperature distribution and modeled the heat transport in all classes of quantum cascade lasers operating both in the mid-infrared and terahertz ranges. All relevant active regions based on GaAs/AlGaAs, GaInAs/AlGaAsSb, GaInAs/AlInAs/InP material systems have been investigated. A common feature of such complex multiple heterostructures is the strong anisotropy of thermal conductivity, its cross-plane component being much smaller than the in-plane one. Bulk contributions to this phenomenon are negligible, whereas a dominant role is played by the presence of abrupt sub-nanometer sized interfaces. The presence of a high density of interfaces causes phonon interference effects, which inherently limit the heat extraction. The values of the thermal boundary resistance have been extracted from our experimental data and compared among several devices. The possibility of generating stimulated emission of phonons in terahertz quantum cascade lasers will be also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.