Abstract
Unfavorable lipid-lipid pairwise interactions between HiTm and LowTm lipids drive liquid-disordered (Ld) + liquid-ordered (Lo) phase separation. Large size of phase domains is opposed by lipid dipole repulsions, which are more significant compared with the pairwise interactions for naturally abundant LowTm lipids such as palmitoyl oleoyl phosphatidylcholine. During the nano-to-macro domain size transition, no lipid phase transition occurs, and measured properties of Ld + Lo nanodomains are found to be essentially the same as those of macrodomains. Use of macrodomains in mixtures to model cell plasma membranes (PM) is helpful, enabling study by optical microscopy. Use of asymmetric giant unilamellar vesicles to model a PM reveals that ordered phase domains in one leaflet induce ordered domains in an otherwise uniform phase in the apposing leaflet that models a cytoplasmic leaflet. Because macro and nano phase properties are so similar, we conclude that a cell PM that has nano-scale Ld + Lo phase domains in the exoplasmic leaflet is likely to induce nano-scale ordered domains in the cytoplasmic leaflet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.