Abstract

We have used depth-resolved cathodoluminescence spectroscopy (DRCLS) to correlate subsurface deep level emissions and double barrier current-voltage (I-V) characteristics across an array of Ni/4H-SiC diodes on the same epitaxial wafer. These results demonstrate not only a correspondence between these optical features and measured barrier heights, but they also suggest that such states may limit the range of SB heights in general. DRCLS of near-ideal diodes show a broad 2.45 eV emission at common to all diode areas and associated with either impurities or inclusions. Strongly non-ideal diodes exhibit additional defect emissions at 2.2 and 2.65 eV. On the other hand, there is no correlation between the appearance of morphological defects observed by polarized light microscopy or X-ray topography and the presence of double barrier characteristics. The DRCLS observations of defect level transitions that correlate with non-ideal Schottky barriers suggest that these sub-surface defect features can be used to predict Schottky barrier behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call