Abstract
AbstractIn this article, we investigate the creep mechanism of clay at the nanoscale. We conduct the molecular dynamics (MD) modeling of clay samples consisting of hexagonal particles under compression and shear. The MD simulations include oedometer creep, shear creep, direct shear tests, and stress relaxation. The numerical results show that the nanoscale creep mechanism of clay is related to particle rotation, translation, and stacking under different loading conditions. The clay sample under creep shows two types of particle arrangements, that is, the shifted face‐to‐face configuration and the face‐to‐edge configuration. The orientation angle of clay particles is computed to track the rotation of individual particles due to creep. The fabric variation of the clay under creep is characterized by the dihedral angle between the basal particle plane and the x‐y plane and the order parameter. It is found that the factors affecting the microstructure variation of the clay aggregate include stress levels, loading rates, and particle sizes. In the nanoscale shear creep test, the creep process comprises three stages, that is, primary, secondary, and tertiary. The microstructure change during creep depends on the initial alignment of clay particles. The clay creep under a more significant stress level results in a more considerable order parameter and a more orientated clay structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.