Abstract
The nanoscaling of metamaterial structures represents a technological challenge toward their application in the optical frequency range. In this work we demonstrate tailored chiro-optical effects in plasmonic nanohelices, by a fabrication process providing a nanometer scale control on geometrical features, that leads to a fine tuning of operation band even in the visible range. Helicoidal 3D nanostructures have been prototyped by a bottom-up approach based on focused ion and electron beam induced deposition, investigating resolution limits, growth control and 3D proximity effects as a function of the interactions between writing beam and deposition environment. The fabricated arrays show chiro-optical properties at the optical frequencies and extremely high operation bandwidth tailoring dependent on the dimensional features of these 3D nanostructures: with the focused ion beam we obtained a broadband polarization selection of about 600 nm and maximum dissymmetry factor up to 40% in the near-infrared regio...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.