Abstract

Encapsulation of human embryonic stem-cell-differentiated beta cell clusters (hES-βC) holds great promise for cell replacement therapy for the treatment of diabetics without the need for chronic systemic immune suppression. Here, we demonstrate a nanoporous immunoprotective polymer thin film cell encapsulation device that can exclude immune molecules while allowing exchange of oxygen and nutrients necessary for in vitro and in vivo stem cell viability and function. Biocompatibility studies show the device promotes neovascular formation with limited foreign body response in vivo. The device also successfully prevented teratoma escape into the peritoneal cavity of mice. Long-term animal studies demonstrate evidence of engraftment, viability, and function of cells encapsulated in the device after 6 months. Finally, in vivo study confirms that the device was able to effectively immuno-isolate cells from the host immune system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.