Abstract

Nanoporous aluminum oxide membranes with high open porosity are prepared by anodic oxidation. Conventional self-supporting as well as mechanically stabilized nanoporous membranes are produced from aluminum plates and microimprinted aluminum foils, respectively. The mechanically stabilized membranes are characterized by very thin membrane parts stabilized by surrounding thick bridges. The minimal thickness of these thin membranes with open pores on both sides is 1 microm, with a mean pore size of the parallel open pores of 185 nm. With these two kinds of membrane the flow rates for cross filtration can be tuned over a wide range. With the mechanically stabilized membranes, substantially higher flow rates are achieved and experiments that cannot be performed with thicker membranes become possible. The biofunctionalization of the pore walls with archaebacterial tetraether lipids is realized and proved using aminated semiconductor nanocrystals. The lipid layer deposited on the pore walls also changes the filtration properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.