Abstract
The influence of varying oxygen pressure P(O2) during the growth of Ba0.4Sr0.6TiO3 thin films is investigated using dielectric and local optical probes. A transition from in-plane to out-of-plane ferroelectricity is observed with increasing P(O2). Signatures of in-plane and out-of-plane ferroelectricity are identified using dielectric response and time-resolved confocal scanning optical microscopy (TRCSOM). At the crossover pressure between in-plane and out-of-plane polarization (Pc=85 mTorr), TRCSOM measurements reveal a soft, highly dispersive out-of-plane polarization that reorients in plane under modest applied electric fields. At higher deposition pressures, the out-of-plane polarization is hardened and is less dispersive at microwave frequencies, and the dielectric tuning is suppressed. Nanopolar reorientation is believed to be responsible for the marked increase in dielectric tuning at P(O2)=Pc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.