Abstract
HypothesisThe stability of colloidal dispersions in the presence of multivalent ions depends strongly on the electrostatic interactions between the suspended particles. Of particular interest are colloidal particles having dimensions in the nanometric range and with an anisotropic shape due to its high surface area per unit mass, for example clay, which has the key characteristic of a negatively charged surface, surrounded by an oppositely charged rim. ExperimentsIn this study, we investigate the interactions in nanoplatelet dispersions for the model system of Laponite® clay with addition of mono- and multivalent salt. Molecular dynamics simulations with enhanced umbrella sampling have been utilised in combination with the experimental techniques of zeta-potential measurements, dynamic light scattering, and transmission electron microscopy. FindingsIt was observed that tactoid formation and tactoidal dissolution due to overcharging occur upon the addition of trivalent salt. The overcharging effect was captured from calculated potential of mean force and confirmed from the zeta-potential, which changed sign from negative to positive when increasing the stoichiometric charge-ratio between the positive salt ions and the clay. Consequently, the gained information could provide useful physical insight of nanoplatelet interactions in the presence of multivalent ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.