Abstract
Solving large-scale computationally hard optimization problems using existing computers has hit a bottleneck. A promising alternative approach uses physics-based phenomena to naturally solve optimization problems, wherein the physical phenomena evolve to their minimum energy. In this regard, photonics devices have shown promise as alternative optimization architectures, benefiting from high-speed, high-bandwidth, and parallelism in the optical domain. Among photonic devices, programmable spatial light modulators (SLMs) have shown promise in solving large scale Ising model problems, to which many computationally hard problems can be mapped. Despite much progress, existing SLMs for solving the Ising model and similar problems suffer from slow update rates and physical bulkiness. Here, we show that using a compact silicon photonic integrated circuit optical phased array (PIC-OPA), we can simulate an XY Hamiltonian, a generalized form of the Ising Hamiltonian, where spins can vary continuously. In this nanophotonic XY Hamiltonian solver, the spins are implemented using analog phase shifters in the optical phased array. The far field intensity pattern of the PIC-OPA represents an all-to-all coupled XY Hamiltonian energy and can be optimized with the tunable phase-shifters, allowing us to solve an all-to-all coupled XY model. Our results show the utility of PIC-OPAs as compact, low power, and high-speed solvers for nondeterministic polynomial-hard problems. The scalability of the silicon PIC-OPA and its compatibility with monolithic integration with CMOS electronics further promise the realization of a powerful hybrid photonic/electronic non-Von Neumann compute engine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.