Abstract

Photonic integrated circuit based optical phased arrays (PIC-OPAs) are emerging as promising programmable processors and spatial light modulators, combining the best of planar and free-space optics. Their implementation on silicon photonic platforms has been especially fruitful. Despite much progress in this field, demonstrating steerable two-dimensional (2D) OPAs that are scalable to a large number of array elements and operate with a single wavelength has proven a challenge. In addition, the phase shifters used in the array for programming the far-field beam are either power hungry or have a large footprint, preventing the implementation of large scale 2D arrays. Here, we demonstrate a two-dimensional silicon photonic phased array with high-speed (∼330 kHz) and ultralow power microresonator phase-shifters with a compact radius (∼3 µm) and 2π phase shift ability. Each phase-shifter consumes an average of ∼250 µW of static power for resonance alignment and ∼50 µW of power for far-field beamforming, a more than one order of magnitude improvement compared to prior OPA works based on waveguide-based thermo-optic phase shifters. Such PIC-OPA devices can enable a new generation of compact and scalable low power processors and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.