Abstract

High-density ferritin nanopatterning - the protein and core complex - on a silicon substrate was achieved using nanometric patterns of amino-group modification. These patterns were made through a combination of EB lithography and vapor-phase deposition of 3-aminopropyltriethoxysilane (APTES). An appropriate buffer solution, with respect to pH and Debye length, suppressed ferritin adsorption on the SiO2 underlayer while ferritins were adsorbed with high density on a nanometer-size APTES layer. We obtained 50-nm patterned ferritins by using a solution with a 1000-nm Debye length (pH 7.0); with this solution, the attractive ferritin-APTES interaction seemed to be strong enough to overcome the repulsive ferritin-SiO2 interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.