Abstract

Precise regulation of neurotransmitter release is essential for the normal function of neural networks, but the mechanisms involved are largely unclear. Using superfused synaptosomes, we have studied the readily releasable pool of synaptic vesicles, measured as the amount of release triggered by hypertonic sucrose. We show that activation of presynaptic metabotropic glutamate receptors by dihydroxyphenylglycine and stimulation of protein kinase C by phorbol esters enhance the readily releasable pool of glutamate. Although the molecular nature of the readily releasable pool is unknown, one possibility is that during its generation, SNARE proteins form full core complexes, and that core complex formation occurs prior to neurotransmitter release. To test this possibility, we employed N-ethylmaleimide (NEM), an inhibitor of the ATPase N-ethylmaleimide-sensitive factor that dissociates core complexes, to study the relation of the readily releasable pool to core complex assembly in synaptosomes. NEM induced a dose-dependent increase in the readily releasable pool of neurotransmitters but by itself did not trigger release. Direct measurements of core complexes confirmed that NEM caused an increase in the levels of SNARE core complexes under these conditions. Our data suggest that in the readily releasable pool of synaptic vesicles, SNARE proteins are fully assembled into core complexes, and that SNARE complex assembly is a target of presynaptic regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call