Abstract

Many vaccines make use of an adjuvant to achieve stronger immune responses. Alternatively, potent immune responses have also been generated by replacing the standard needle and syringe (which places vaccine into muscle) with devices that deliver vaccine antigen to the skin's abundant immune cell population. However it is not known if the co-delivery of antigen plus adjuvant directly to thousands of skin immune cells generates a synergistic improvement of immune responses. In this paper, we investigate this idea, by testing if Nanopatch delivery of vaccine – both the antigen and the adjuvant – enhances immunogenicity, compared to intramuscular injection. As a test-case, we selected a commercial influenza vaccine as the antigen (Fluvax 2008®) and the saponin Quil-A as the adjuvant. We found, after vaccinating mice, that anti-influenza IgG antibody and haemagglutinin inhibition assay titre response induced by the Nanopatch (with delivered dose of 6.5ng of vaccine and 1.4μg of Quil-A) were equivalent to that of the conventional intramuscular injection using needle and syringe (6000ng of vaccine injected without adjuvant). Furthermore, a similar level of antigen dose sparing (up to 900 fold) – with equivalent haemagglutinin inhibition assay titre responses – was also achieved by delivering both antigen and adjuvant (1.4μg of Quil-A) to skin (using Nanopatches) instead of muscle (intramuscular injection). Collectively, the unprecedented 900 fold antigen dose sparing demonstrates the synergistic improvement to vaccines by co-delivery of both antigen and adjuvant directly to skin immune cells. Successfully extending these findings to humans with a practical delivery device – like the Nanopatch – could have a huge impact on improving vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.