Abstract
AbstractThin‐film composite nanofiltration membranes were prepared by interfacial polymerization reaction of piperazine and trimesoylchloride on virgin and nanoparticles (SiO2/TiO2) modified Polyacrylonitrile/70:30 and 30:70 Polyacrylonitrile – Polyvinylidenefluoride blend ultrafiltration substrates. The membranes were characterized for surface hydrophilicity and potential, surface and cross‐sectional morphology and equilibrium water content. Pure water permeability and differential rejection of multi (MgSO4) and monovalent salts (NaCl) of the membranes were studied. Nanofiltration (NF) membranes prepared on nanoparticle modified UF substrates exhibit higher flux than the membranes prepared on virgin UF substrates. NF membranes prepared on TiO2 modified substrates are exhibiting higher flux than the other membranes. Membrane prepared on TiO2 modified 70:30 blend substrate exhibits the highest rejection ratio (4.63) of divalent to monovalent salts. Nanofiltration membranes prepared on nanoparticle modified substrates are displaying comparatively higher flux recovery ratio (FRR) and lower total fouling ratio (TFR) values than the NF membranes prepared on virgin ultrafiltration substrates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have