Abstract
Recent advancements in nanotechnology have significantly enhanced the development of near-infrared fluorescence (NIRF) probes, positioning them as powerful tools in cancer imaging. This paper explores the unique advantages of nanoparticles incorporating NIR dyes, such as indocyanine green (ICG) and DiR, which exhibit deep tissue penetration and minimal background autofluorescence. The enhanced permeability and retention (EPR) effect facilitates selective accumulation in tumor tissues, enabling sophisticated imaging and precision-targeted drug delivery systems. This review highlights the remarkable potential of NIRF imaging techniques in molecular diagnostics, emphasizing their ability to differentiate malignant tissues at a molecular level. Additionally, we discuss various NIRF dye classifications, including cyanine and BODIPY-based probes, along with the development of multifunctional agents that enhance imaging specificity and therapeutic effectiveness. The integration of advanced targeting capabilities, including the use of antibodies and small molecules, further improves the precision of these imaging agents. While challenges remain regarding the pharmacokinetics and potential toxicity of nanoparticle-based probes, their capacity for real-time tumor tracking and the promise of multimodal imaging approaches underscore their transformative role in cancer diagnostics and treatment. By advancing the field of theranostics, nanoparticle-enhanced NIRF probes pave the way for personalized medicine and improved patient outcomes in oncology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Frontiers in Medicine and Surgery Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.