Abstract
Vacuolar-type (H+)-ATPase (vATPase) is a conserved multi-subunit eukaryotic enzyme composed of 14 subunits that form a functional complex consisting of an ATP-hydrolytic domain (V1) and a proton-translocation domain (V0). ATP hydrolysis and subsequent H+ translocation rely heavily on a fully assembled V1/V0 complex. Since vATPase is crucial for insect survival, it is a viable molecular target for pest control. However, detailed functional analyses of the 14 subunits and their suitability for pest control have not been fully explored in a single insect species. In this study, we identified 22 vATPase subunit transcripts that correspond to 13 subunits (A1, A2, B, C, D, E, F, G, H, a1, a2, c and d) in the white-backed planthopper (WBPH), Sogatella furcifera, a major hemipteran pest of rice. RNAi screens using microinjection and spray-based methods revealed that the SfVHA-F, SfVHA-a2 and SfVHA-c2 subunits are critical. Furthermore, star polymer (SPc) nanoparticles were utilized to conduct spray-induced and nanoparticle-delivered gene silencing (SI-NDGS) to evaluate the pest control efficacy of RNAi targeting the SfVHA-F, SfVHA-a2 and SfVHA-c2 transcripts. Target mRNA levels and vATPase enzymatic activity were both reduced. Honeydew excreta was likewise reduced in WBPH treated with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. To assess the environmental safety of the nanoparticle-wrapped dsRNAs, Cyrtorhinus lividipennis Reuter, a major natural enemy of planthoppers, was also sprayed with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. Post-spray effects of dsSfVHA-a2 and dsSfVHA-c2 on C. lividipennis were innocuous. This study identifies SfVHA-a2 and SfVHA-c2 as promising targets for biorational control of WBPH and lays the foundation for developing environment-friendly RNAi biopesticides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.