Abstract

In this letter we report a nanoparticle-derived route to CdTe thin films. CdTe nanoparticles 39±8 Å in diameter, prepared by an organometallic route, were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. CdTe thin-film deposition was realized by spraying a nanoparticle/butanol colloid onto SnO2-coated glass substrates at variable susceptor temperatures. The resultant CdTe films were characterized by atomic force microscopy, x-ray diffraction, and UV-Vis spectroscopy. Smooth and dense CdTe thin films were obtained using growth temperatures ∼200 °C less than conventional spray pyrolysis. A growth temperature dependence upon CdTe grain size formation and crystallinity was observed by atomic force microscopy and x-ray diffraction. UV-Vis characterization revealed a transformation in the optical properties of the CdTe thin films as a function of growth temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.