Abstract

Transplantation of gene-transfected bone marrow-derived mesenchymal stem cells (BMMSCs) is a promising strategy for ischemic myocardium repair, but current therapeutic strategy suffers from high toxicity and inefficient gene transfection in primary BMMSCs. Here we designed and synthesized molecularly organic–inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) based on nano-synthetic chemistry, which are featured with concurrent large pore size over 20 nm, small particulate size, hollow cavity and high dispersity for gene transfection in BMMSCs and subsequent in vivo cardiac repair. To efficiently create the therapeutic gene-transfected stem-cell lines, hepatocyte growth factor (HGF) gene was applied to transfect BMMSCs via biocompatible surface-engineered HMONs as a high-performance gene-delivery nanosystem. On the rat model of myocardial infarction, transplantation of HGF gene-transfected BMMSCs enables the largely decreased apoptotic cardiomyocytes, reduced infarct scar size, relieved interstitial fibrosis, and increased angiogenesis in myocardium. The resultant cardiac repair further promotes the significant improvement of heart function. Therefore, the fabricated organic–inorganic hybrid HMONs with large pore size represent a generalizable strategy and platform for gene transfection in BMMSCs and further regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.