Abstract

This paper reports a device that performs nanoparticle detection with a microfluidic differential Resistive Pulse Sensor (RPS). By using a single microfluidic channel with two detecting arm channels placed at the two ends of the sensing section, the microfluidic differential RPS can achieve a high sensitivity allowing the detection of nanometer size particles. Two-stage differential amplification is used to further increase the signal-to-noise ratio. This method is able to detect nanoparticles of 490nm on a microfluidic chip. An 8μm gate and a 2.7μm gate detected the 490 nm particle. The electrical signal was with optical evidence. The result showed 2.7μm chip can realize signal to noise ratio higher than 10. The method described in this paper is simple and can be applied to develop a compact device without the need of bulky, sophisticated electronic instruments or complicated nano-fabrication processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.