Abstract

We report the effects of microwave irradiation on both unpurified and purified iron-catalyzed high-pressure disproportionation (HiPco)-grown single-walled carbon nanotubes (SWNTs) in ultrahigh vacuum. Under microwave irradiation, we observe that unpurified HiPco SWNTs quickly reach temperatures of approximately 1850 °C. As a result, H2, H2O, CO, CO2, and CH4 gases are observed, and the Fe catalyst nanoparticles melt and coalesce into larger crystallites approximately four times their original diameter. In contrast, carbon black and purified HiPco SWNTs heat up to temperatures of 500–650 °C. We propose that the significant heating of unpurified HiPco SWNTs is due to the Fe catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.