Abstract

A program to numerically simulate quantum transport in double gate metal oxide semiconductor field effect transistors (MOSFETs) is described. The program uses a Green's function approach and a simple treatment of scattering based on the idea of so-called Buttiker probes. The double gate device geometry permits an efficient mode space approach that dramatically lowers the computational burden and permits use as a design tool. Also implemented for comparison are a ballistic solution of the Boltzmann transport equation and the drift-diffusion approaches. The program is described and some examples of the use of nanoMOS for 10 nm double gate MOSFETs are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call